Patrick Huembeli
Patrick Huembeli
Verified email at
Cited by
Cited by
Identifying quantum phase transitions with adversarial neural networks
P Huembeli, A Dauphin, P Wittek
Physical Review B 97 (13), 134109, 2018
Unsupervised phase discovery with deep anomaly detection
K Kottmann, P Huembeli, M Lewenstein, A Acín
Physical Review Letters 125 (17), 170603, 2020
Characterizing the loss landscape of variational quantum circuits
P Huembeli, A Dauphin
Quantum Science and Technology 6 (2), 025011, 2021
Automated discovery of characteristic features of phase transitions in many-body localization
P Huembeli, A Dauphin, P Wittek, C Gogolin
Physical review B 99 (10), 104106, 2019
QuCumber: wavefunction reconstruction with neural networks
MJS Beach, I De Vlugt, A Golubeva, P Huembeli, B Kulchytskyy, X Luo, ...
SciPost Physics 7 (1), 009, 2019
Phase detection with neural networks: interpreting the black box
A Dawid, P Huembeli, M Tomza, M Lewenstein, A Dauphin
New Journal of Physics 22 (11), 115001, 2020
Avoiding local minima in variational quantum algorithms with neural networks
J Rivera-Dean, P Huembeli, A Acín, J Bowles
arXiv preprint arXiv:2104.02955, 2021
Towards a heralded eigenstate-preserving measurement of multi-qubit parity in circuit QED
P Huembeli, SE Nigg
Physical Review A 96 (1), 012313, 2017
Modern applications of machine learning in quantum sciences
A Dawid, J Arnold, B Requena, A Gresch, M Płodzień, K Donatella, ...
arXiv preprint arXiv:2204.04198, 2022
Exploring quantum perceptron and quantum neural network structures with a teacher-student scheme
A Gratsea, P Huembeli
Quantum Machine Intelligence 4 (1), 1-15, 2022
Hessian-based toolbox for reliable and interpretable machine learning in physics
A Dawid, P Huembeli, M Tomza, M Lewenstein, A Dauphin
Machine Learning: Science and Technology 3 (1), 015002, 2021
The physics of energy-based models
P Huembeli, JM Arrazola, N Killoran, M Mohseni, P Wittek
Quantum Machine Intelligence 4 (1), 1-13, 2022
PatrickHuembeli/Adversarial-Domain-Adaptation-for-Identifying-Phase-Transitions: DANN Arxiv Version 01
P Huembeli, A Dauphin, P Wittek
Entanglement Forging with generative neural network models
P Huembeli, G Carleo, A Mezzacapo
arXiv preprint arXiv:2205.00933, 2022
Adversarial domain adaptation for identifying phase transitions
P Huembeli, A Dauphin, P Wittek
arXiv preprint arXiv:1710.08382, 2017
The effect of the processing and measurement operators on the expressive power of quantum models
P Huembeli
arXiv preprint arXiv:2211.03101, 2022
Towards a scalable discrete quantum generative adversarial neural network
S Chaudhary, P Huembeli, I MacCormack, TL Patti, J Kossaifi, A Galda
arXiv preprint arXiv:2209.13993, 2022
Quadratic Unconstrained Binary Optimization via Quantum-Inspired Annealing
J Bowles, A Dauphin, P Huembeli, J Martinez, A Acín
Physical Review Applied 18 (3), 034016, 2022
Towards interpretable and reliable machines learning physics
A Dawid, P Huembeli, M Tomza, M Lewenstein, A Dauphin
Bulletin of the American Physical Society 67, 2022
Machine learning for quantum physics and quantum physics for machine learning
P Huembeli
Universitat Politècnica de Catalunya, 2021
The system can't perform the operation now. Try again later.
Articles 1–20