Ha-Kyung Kwon
Ha-Kyung Kwon
Toyota Research Institute
Verified email at
Cited by
Cited by
Sustained micellar delivery via inducible transitions in nanostructure morphology
NB Karabin, S Allen, HK Kwon, S Bobbala, E Firlar, T Shokuhfar, KR Shull, ...
Nature communications 9 (1), 624, 2018
Self-assembly of charge-containing copolymers at the liquid–liquid interface
F Jiménez-Ángeles, HK Kwon, K Sadman, T Wu, KR Shull, ...
ACS Central Science 5 (4), 688-699, 2019
BEEP: A python library for battery evaluation and early prediction
P Herring, CB Gopal, M Aykol, JH Montoya, A Anapolsky, PM Attia, ...
SoftwareX 11, 100506, 2020
Anomalous phase behavior of ionic polymer blends and ionic copolymers
VA Pryamitsyn, HK Kwon, JW Zwanikken, M Olvera de La Cruz
Macromolecules 50 (13), 5194-5207, 2017
Theoretical analysis of multiple phase coexistence in polyelectrolyte blends
HK Kwon, JW Zwanikken, KR Shull, M Olvera de la Cruz
Macromolecules 48 (16), 6008-6015, 2015
Toward autonomous materials research: Recent progress and future challenges
JH Montoya, M Aykol, A Anapolsky, CB Gopal, PK Herring, ...
Applied Physics Reviews 9 (1), 2022
The materials research platform: defining the requirements from user stories
M Aykol, JS Hummelshøj, A Anapolsky, K Aoyagi, MZ Bazant, T Bligaard, ...
Matter 1 (6), 1433-1438, 2019
Determining the regimes of dielectric mismatch and ionic correlation effects in ionomer blends
HK Kwon, B Ma, M Olvera de la Cruz
Macromolecules 52 (2), 535-546, 2019
What is missing in autonomous discovery: Open challenges for the community
PM Maffettone, P Friederich, SG Baird, B Blaiszik, KA Brown, SI Campbell, ...
Digital Discovery 2 (6), 1644-1659, 2023
Solubility and interfacial segregation of salts in ternary polyelectrolyte blends
HK Kwon, VA Pryamitsyn, JW Zwanikken, KR Shull, MO De La Cruz
Soft Matter 13 (28), 4830-4840, 2017
Polystyrene-poly (2-ethylhexylmethacrylate) block copolymers: Synthesis, bulk phase behavior, and thin film structure
HK Kwon, VE Lopez, RL Davis, SY Kim, AB Burns, RA Register
Polymer 55 (8), 2059-2067, 2014
Early prediction of ion transport properties in solid polymer electrolytes using machine learning and system behavior-based descriptors of molecular dynamics simulations
A Khajeh, D Schweigert, SB Torrisi, L Hung, BD Storey, HK Kwon
Macromolecules 56 (13), 4787-4799, 2023
De novo design of polymer electrolytes with high conductivity using gpt-based and diffusion-based generative models
Z Yang, W Ye, X Lei, D Schweigert, HK Kwon, A Khajeh
arXiv preprint arXiv:2312.06470, 2023
Informatics-Driven Selection of Polymers for Fuel-Cell Applications
H Tran, KH Shen, S Shukla, HK Kwon, R Ramprasad
The Journal of Physical Chemistry C 127 (2), 977-986, 2023
A self-improvable Polymer Discovery Framework Based on Conditional Generative Model
X Lei, W Ye, Z Yang, D Schweigert, HK Kwon, A Khajeh
arXiv preprint arXiv:2312.04013, 2023
A user-centered approach to designing an experimental laboratory data platform
HK Kwon, CB Gopal, J Kirschner, S Caicedo, BD Storey
arXiv preprint arXiv:2007.14443, 2020
A cloud platform for sharing and automated analysis of raw data from high throughput polymer MD simulations
T Xie, HK Kwon, D Schweigert, S Gong, A France-Lanord, A Khajeh, ...
APL Machine Learning 1 (4), 2023
A cloud platform for automating and sharing analysis of raw simulation data from high throughput polymer molecular dynamics simulations
T Xie, HK Kwon, D Schweigert, S Gong, A France-Lanord, A Khajeh, ...
arXiv preprint arXiv:2208.01692, 2022
Closed loop simulation platform for accelerated polymer electrolyte material discovery
D Schweigert, K Ha-Kyung, A Khajeh
US Patent App. 17/860,016, 2024
Autonomous laboratories for accelerated materials discovery: a community survey and practical insights
L Hung, JA Yager, D Monteverde, D Baiocchi, HK Kwon, S Sun, ...
Digital Discovery, 2024
The system can't perform the operation now. Try again later.
Articles 1–20