James Edward Saal
James Edward Saal
Citrine Informatics
Verified email at
Cited by
Cited by
Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD)
JE Saal, S Kirklin, M Aykol, B Meredig, C Wolverton
Jom 65, 1501-1509, 2013
The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
S Kirklin, JE Saal, B Meredig, A Thompson, JW Doak, M Aykol, S Rühl, ...
npj Computational Materials 1 (1), 1-15, 2015
Combinatorial screening for new materials in unconstrained composition space with machine learning
B Meredig, A Agrawal, S Kirklin, JE Saal, JW Doak, A Thompson, K Zhang, ...
Physical Review B 89 (9), 094104, 2014
High-throughput computational screening of perovskites for thermochemical water splitting applications
AA Emery, JE Saal, S Kirklin, VI Hegde, C Wolverton
Chemistry of Materials 28 (16), 5621-5634, 2016
Enthalpies of formation of magnesium compounds from first-principles calculations
H Zhang, S Shang, JE Saal, A Saengdeejing, Y Wang, LQ Chen, ZK Liu
intermetallics 17 (11), 878-885, 2009
Passivation of a corrosion resistant high entropy alloy in non-oxidizing sulfate solutions
KF Quiambao, SJ McDonnell, DK Schreiber, AY Gerard, KM Freedy, P Lu, ...
Acta materialia 164, 362-376, 2019
Thermodynamic stability of Mg-based ternary long-period stacking ordered structures
JE Saal, C Wolverton
Acta Materialia 68, 325-338, 2014
Integrated computational materials engineering of corrosion resistant alloys
CD Taylor, P Lu, J Saal, GS Frankel, JR Scully
npj Materials Degradation 2 (1), 6, 2018
Computational materials design of a corrosion resistant high entropy alloy for harsh environments
P Lu, JE Saal, GB Olson, T Li, OJ Swanson, GS Frankel, AY Gerard, ...
Scripta Materialia 153, 19-22, 2018
Predicting β′ precipitate morphology and evolution in Mg–RE alloys using a combination of first-principles calculations and phase-field modeling
YZ Ji, A Issa, TW Heo, JE Saal, C Wolverton, LQ Chen
Acta materialia 76, 259-271, 2014
Machine learning in materials discovery: confirmed predictions and their underlying approaches
JE Saal, AO Oliynyk, B Meredig
Annual Review of Materials Research 50, 49-69, 2020
Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling
JE Saal, IS Berglund, JT Sebastian, PK Liaw, GB Olson
Scripta Materialia 146, 5-8, 2018
High-throughput computational search for strengthening precipitates in alloys
S Kirklin, JE Saal, VI Hegde, C Wolverton
Acta Materialia 102, 125-135, 2016
Approaching chemical accuracy with density functional calculations: Diatomic energy corrections
S Grindy, B Meredig, S Kirklin, JE Saal, C Wolverton
Physical Review B—Condensed Matter and Materials Physics 87 (7), 075150, 2013
Formation of high-strength β′ precipitates in Mg–RE alloys: the role of the Mg/β ″interfacial instability
A Issa, JE Saal, C Wolverton
Acta Materialia 83, 75-83, 2015
Thermodynamic stability of Co–Al–W L12 γ′
JE Saal, C Wolverton
Acta materialia 61 (7), 2330-2338, 2013
Localized corrosion behavior of a single-phase non-equimolar high entropy alloy
T Li, OJ Swanson, GS Frankel, AY Gerard, P Lu, JE Saal, JR Scully
Electrochimica Acta 306, 71-84, 2019
The structural evolution of boron carbide via ab initio calculations
JE Saal, S Shang, ZK Liu
Applied Physics Letters 91, 231915, 2007
Prediction of seebeck coefficient for compounds without restriction to fixed stoichiometry: A machine learning approach
A Furmanchuk, JE Saal, JW Doak, GB Olson, A Choudhary, A Agrawal
Journal of computational chemistry 39 (4), 191-202, 2018
Physical factors controlling the observed high-strength precipitate morphology in Mg–rare earth alloys
A Issa, JE Saal, C Wolverton
Acta materialia 65, 240-250, 2014
The system can't perform the operation now. Try again later.
Articles 1–20